
Computer Science

■T*Ki
Ml1 i

An Approach for Quality of
Service Management

Chen Lee and Dan Siewiorek

October 1998

CMU-CS-98-165

Hff>
i Ms V ' i

gabaegie u ellon

^DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

DBOQOiLUrriBSPBCXBDi

An Approach for Quality of
Service Management

Chen Lee and Dan Siewiorek

October 1998

CMU-CS-98-165

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

We present a translucent QoS management optimization framework for systems that must satisfy
application needs along multiple dimensions such as timeliness, reliability, cryptographic security
and other application-specific quality requirements. The architecture of the system consists of a
semantically rich (in terms of customizable and expressiveness) QoS specification interface for multi-
dimensional QoS provisioning, a quality-of-service index model to help the user make the quality
trade-off decision, and a unified QoS-based admission control and resource planning system. The

semantically rich QoS specification interface allows the user or system administrator to define fine-
grained service requests in terms of quality or rate of service. The QoS index model is designed to
be flexible and policy driven. The unified QoS-based admission and resource control facilitates the
deployment of various QoS policies to meet performance objectives for specific service optimizations.
Finally, the overall architecture enables us to quantitatively measure QoS, and to analytically plan
and allocate resource.

This work was supported in part by the Defense Advanced Research Projects Agency under agreements N66001-
97-C-8527 and E30602-97-2-0287.

The views and conclusions contained in this document are those of the authors and should not be interpreted as
representing official policies, either expressed or implied of the Defense Advanced Research Projects Agency or the
U.S. government.

DISTRIBUTION STATEMENT A
Approved for Public Relea«*

Distribution Unlimited

Keywords: QoS management and optimization, QoS index and utility model, QoS tradeoff, re-
source tradeoff, multi-media

1 Introduction

Quality of Service (QoS) control is considered an important user demand and therefore receives wide
attention, especially in the areas of computer network and real-time multimedia system research,
and in commercial markets as well.

Typically, service characteristics in existing systems are fixed when systems are built, therefore
they often do not give users any real influence over the QoS they can obtain. On the other hand,
multimedia applications and their users can differ enormously in their requirements for the rate of
services and resources available to them at the time of use of the application systems. Therefore
there is an increasing need for customizable services that can be tailored for the end users' specific
requirements.

In the meantime, new and improved systems [Pro96] are placing more and more complex demands on
the quality of service that are reflected in multiple criteria over multiple quality dimensions. These
QoS requirements can be objective in some aspects and subjective in others. Moreover, because of
the manifold and subjective nature of user quality demands, it is very hard to measure whether the
provided quality fulfills the stated demands without guidance and input from end clients.

One issue is the QoS Tradeoff where a user of an application might want to emphasize certain aspects
of quality, but not necessarily others. Users might tolerate different levels of service, or could be
satisfied with different quality combination choices, but the available system resource might only be
able to accommodate some choices but not others. In situations where a user is able to identify a
number of desirable qualities and rate them, the system should be able to reconcile these different
demands to maximize the user's preference and to make the most effective use of the system. So it
is important for a system to provide a large variety of service qualities and to accommodate specific
user quality requirements and delivery as good service as it can from the users' perspective.

A similar issue to QoS Tradeoff is Resource Tradeoff. In this case the tradeoff refers to the reconcil-
ing or balancing of competing resource demands. Resource Tradeoff is often transparent to the user
but can be of great help in accommodating user requirements including QoS Tradeoff, especially
when the availability of several different resources is not balanced. It arises when an application is
able to use an excess of one resource, say CPU power, to lower its demands on another, say network
bandwidth, while maintaining the same level of QoS. For example, video conferencing systems often
use compression schemes that are effective, but computationally intensive, to trade CPU time for
network bandwidth. If the bandwidth is congested on some intermediate links (which is often the
case), this benefits the system as a whole. In the case of a mobile client with limited CPU and
memory capacity but sufficient link speed with a nearby intermediate powerful server, the com-
putational expensive speech recognition, silence detection and cancelation, and video compression
could be carried out on the nearby server. For proxy servers which act as transcoders/transceivers
besides caching data, the proxy servers can distill data for low bandwidth clients (when both server
and client have fast CPU, memory and disk bandwidth, but the network link speed in between is
limited).

The rest of the paper is organized as follows: Section 2 gives an overview of the QoS management
optimization system. Section 3 classifies and formulates our QoS optimization problems. Section
4 discusses the user specification interface and mechanisms for QoS specification acquisition. Sec-
tion 5 discusses the design principles for the QoS optimization. Section 6 and 7 presents various
optimization algorithms for solving our QoS management optimization problems.

2 System Overview

We have proposed a translucent QoS framework[Lee97][RLLS97] for QoS management in systems
that must satisfy application needs along multiple dimensions such as timeliness, reliability, cryp-
tographic security and other application-specific quality requirements. The architecture consists of
a semantically rich (in terms of customizability and expressiveness) QoS specification interface for
multi-dimensional QoS provision, a quality-of-service index model to help the user make the quality
trade-off decision, and a unified QoS-based admission control and resource planning system.

The seniantically rich QoS specification interface allows the user or system administrator to define
fine-grained service requests in terms of quality or rate of service. The QoS index model is designed
to be flexible and policy driven. The unified QoS-based admission and resource control facilitates the
deployment of various QoS policies to meet performance objectives for specific service optimizations.
Finally, t lie overall architecture enables us to quantitatively measure QoS, and to analytically plan
and allocate resources.

The system can be used to continuously monitor and adjust clients' level of service in light of the
dynamically changing operational environment (of clients and resources). We also develop quality
measures and indicators that will enable the system to emphasize quality, effectiveness and efficiency
in the delivery of the services.

Our QoS specification allows applications and users to put values on the different levels of service
that the system can provide. When "value" is taken literally, this means that our model is able to
facilitate market-efficient resource distribution. Such a system has considerable potential, especially
in solving bandwidth problems of the increasingly crowded Internet.

Figure 1 gives a pictorial view of our QoS management optimization system.

Task Profiles

£«'T*^

Figure 1: In and Out of the QoS Management Optimization Module

3 Problem Taxonomy, Modelling and Complexity

3.1 Problem Taxonomy

We classify the problem based on resources and QoS dimensions as follows:

• Single Resource Single QoS Dimension: SRSD

• Single Resource Multiple QoS Dimension: SRMD

• Multiple Resource Single QoS Dimension: MRSD

• Multiple Resource Multiple QoS Dimension: MRMD

Since SRMD is a superset of SRSD, and MRMD a superset of MRSD, SRMD and MRMD will be
treated directly.

The reason for addressing SRMD is that we could develop efficient schemes that might not be
easily achievable for MRMD. The schemes we have for SRMD readily lead us to a QoS-driven single
resource allocation when only a single resource is of concern (either it is the only resource under
consideration, or it is relatively more scarce and other resources are abundant). For instance, these
schemes can be used for QoS-driven disk, memory, network bandwidth or other shared resource
management and allocation, as well as for processor scheduling.

Since resource tradeoff is one of the main interests of our research, we will consider resource tradeoffs
whenever applicable. That is, whenever multiple resources are involved, tradeoffs among them will
be handled by default.

3.2 Problem Formulation

Consider a system with multiple independent applications and multiple resources. Each application,
with its own quality-of-service requirements, contends with other applications for finite system
resources. Let the following be given

Ti, T2, ..., Tn — tasks (or applications)
i?i, i?2) • • • 1 Rm — shared system resources
Qii) Qi2i ■ • • 1 Qidi — quality-of-service dimensions for task Ts

Each Ri is a set of non-negative values representing the possible allocation choices of the ith shared
resource. The set of possible resource vectors, denoted as R, is given by R = Ri X • • • X Rm. Each
shared resource is finite, so we also have rmax = (rj13*,..., r™ax).

Similarly, each Qij is a finite set of quality choices for the ith task's jth quality-of-service dimension
and we define the set of possible quality vectors by Qi = Qn X ■ • • X Qid{.

Associated with each T; is an Application Profile and User Profile. An Application Profile comes
from an application designer, while a User Profile provides user-specific quality requirement associ-
ated with each session. A user can either instantiate the attributes of the default application profile,

by selecting one of many templates supplied with the application, or the user can supply their own
merit and reward functions with respect to different levels of qualities.

Application Profile: consists of a QoS Profile and a Resource Profile.

• A QoS Profile consists of

— Quality Space — Qi

— Quality Index — a bijective function

Jij '• ^cij ^ l-*-) A • • •) IWijIj

that preserves the ordering, i.e., if ^i is "better than" q2, then fij(qi) > fij{q2)- Since fij
is bijective, it has an inverse f~^ : {(y,x) | (x,y) £ /}, i.e. ffj1 : {1, 2,..., \Qij\} -» Qij.

For simplicity, in the rest of this paper we will also use Qij and qij to represent their
corresponding fij-indexed quality sets and quality points. This should not cause any
confusion as the context clearly determines whether the original quality specification or

index value is under consideration.

— Dimension-wise Quality Utility — U{j : Qij —> IR

— Application Utilities — a QoS or rate of service measure

Ui :Qi ->TR

It could be defined as a weighted sum of M,J

di

Ui{li) = ^2wijuij(<lij)
i=i

We require that Ui is non-decreasing in all di arguments and that it is non-negative.

• A Resource Profile for Tt- defines a relation between R and Qi:

which describes a list of potential resource allocation schemes to achieve each quality point q.

Note that both R and Qi have partial orderings which |=t- must respect. That is, if rj |=j qi, r2 \=i q2,
and ri > T2, then we will have q\ •£ q2- This partial ordering is required to ensure that utility is
non-decreasing with respect to resources. In other words, more resources should not lead to reduced
quality (and thus utility), which is reasonable and natural.

It is important to note that we can only define a relation but not a function between Qi and R. For
a given value of q, multiple resource allocation schemes could be used to achieve the same level of
quality; likewise, for a given resource allocation, one could use the resource(s) to improve different
QoS dimensions, which could yield different quality results. The scatter plot in Figure 2, which
depicts a possible relation between resource and quality, might help us visualize this.

User Profile: mostly an instantiation of the Application Profile

• An Application QoS Profile provides a template, which a user could instantiate to create a
User Profile. A user could also supply his/her own QoS Profile which supersedes those provided
by the application. Furthermore, a User Profile could specify its QoS constraints.

a

■ * •

• • • •

• *
• m
m • • • •
 * **"1

• • • •
• • • •

resource

Figure 2: Scatter of Resource and Quality

QoS Constraint: is the minimum QoS requirement specification
mm
i2) ■ ■

mim
<1idi >

When the minimum requirements cannot be satisfied, the user of task Tt- might choose not to
run Ti at all.

Alternatively we could let the user implicitly specify the gf"n through utility functions by
setting Ui(q) = 0 for all q < g™m. We have yet to complete a user-interface study to decide
whether this approach will compromise the simplicity of the user-interface. For now, we will
use this QoS Constraint approach.

• A user might explicitly specify a cap, or Saturation Point, 9fax, on its quality requirement
to indicate that further improvements beyond it are not likely to be perceived or appreciated.
Similar to the discussion of qmm above, the maximum quality constraint could be handled by
setting Ui(q) = ^(qf1**) for all q > q™ax.

To simplify our presentation, we did not explicitly use this aspect in the algorithms presented
in this paper.

In the rest of the paper, the Task Profile will be used to represent the effect of using an application
profile that has been instantiated by the user profile. The terms Application Profile, User Profile,
and Task Profile might be used interchangeably which denotes an instantiated Application Profile
with possibly added QoS Constraint and QoS Saturation Point.

For the overall system, with multiple applications possibly requiring multiple resources, we have the

System Utility u : Q\ x • • • x Qn —»■ 1R, which could be defined as:

• A (weighted) sum of Application Utilities
n

u(qi,...,qn) = ^2wiUi(qi)

for differential services, where U{ is non-decreasing, and 0 < w; < 1 could be the priority1

of Ti: or
1 Note that the algorithms or schemes presented in this paper are for the weighted sum where the weights are set

to 1 for simplification to present the algorithms.

• u — u*, where

for "fair" sharing.

v>*(qu...,qn) = .min «,•(&
z=l...n

The goal is to assign qualities (g,-) and allocate resources (r,-) to tasks or applications, such that the
system utility u is maximized. Therefore we have the following Problem Function formulation

maximize u(qi,...,qn)

subject to qi > q™m or qt: — 0 , i = 1,..., n, (QoS Constraints)

(1)
y^ r^ < r™ax , j = 1,..., m, (Resource Constraints)
i=l
ri \=i qi , i= l,...,n.

3.3 Problem Complexity

This combinatorial problem could also be formulated as follows. Let %,..., Ki\QA be an enumeration
of the quality space, Qi, for task T,-. Let /Ojji,.. -,PijN{j be an enumeration of the resource usage
choices (tradeoffs among different resources) associated with Kij for T;, where Nij is the number of
such resource usage choices. (In particular we should always have pijk (=j Kij.)

Let Xijk = 1 if task Ti has been given quality point Kij and resource consumption p^k, and Xijk = 0
otherwise.

n \Qi\ N,

maximize X] X] X! xijkui(Kij)
i=i j=i fc=i

subject to Y1J2J2 xiJkPijki < r™ax, £ = 1,..., m,
i-\ j-\ k=i (2)

IQ.I Nij

Y112 Xiik -1' i = i,...,n,
3 = 1 k=\

Xijk € {0,1}, i= l,...,ra, j = l,...,|<2i|, k= l,...,Nij.

Note, that pijkt is just the fth coordinate of the vector pijk-

Therefore all the instances of our problem can be viewed as special cases of the general (mix) Integer
or Nonlinear Programming problems.

Proposition 1 SRSD, SRMD, MRSD, and MRMD are all NP-Hard problems.

Proof Since SRSD is a special case of the other three, we only have to show that SRSD is NP-Hard.

„max
)

(3)

For SRSD, we have m = Njj = 1 and thus k = £ = 1. System (2) becomes

n \Qi\

maximize yiy*, XjjiUjJKij)
i=l j=l

n \Qi\

subject to ^^Xjjipijn < rm

i=lj=l

\Qi\

J2xiji ^ !' i = l,...,n,
i=i

ajjji G {0,1}, i=l,...,n, j= l,...,\Qi\.

The 0-1 Knapsack Problem is known to be NP-Hard [MT90]. It can be described as follows. Given
a set of n items and a knapsack of capacity c, with pi and W{ the profit and weight of item i
respectively, select a subset of the items so as to

n

maximize Y^ piXi
=i

n

SUtJ
»=1

i=l

n

lbject to 22 wixi ^ c (4)

z;G{0,l}, i = l,...,n,

We can therefore reduce the 0-1 Knapsack Problem to SRSD by setting

Qi = {(i)}
ui{m) = Pi
rmax = c

Pilll = Wi

and have the 0-1 Knapsack Problem's Xj represented by xm in the SRSD case. □

4 User Specification Interface for QoS Provision

At the crux of our translucent QoS management optimization system lies the QoS specification.
First, it is important that we provide powerful and semantically rich QoS specifications that they
system and the user can use for service optimization. Equally important we need to provide a user
friendly interface that facilitates specification acquisition.

The reason for the emphasis on QoS specification and interface design might not be obvious, but the
reader should see the point shortly as the quality dimensions of typical multimedia systems, QoS
tradeoff and resource tradeoff issues are presented.

4.1 Quality Dimensions

We consider the following example quality dimensions, by no means exclusive, with their corre-
sponding dimensional space ordered from worst to best:

7

• Cryptographic Security (encryption key-length) : O(off), 56, 64, 128

• Data Delivery Reliability, which could be

- maximum packet loss : in percentage

- expected packet loss : in percentage

- packet loss occurrence : in probability

• Video Related Quality

- picture format2: SQCIF, QCIF, CIF, 4CIF, 16CIF

- color depth(bits): 1, 3, 8, 16, 24, ...
Mack/white, grey scale to high color

- video timeliness — frame rate(fps): 1, 2, ..., 30

low-frame-rate cartoon or animation to high motion picture video

• Audio Related Quality

- sampling rate(kHz): 8, 16, 24, 44, ...
AM. FM, CD quality to higher fidelity audio

- sample bit(bits): 8, 16, ...

- audio timeliness — end-to-end delay(ms): ..., 100, 75, 50, 25, ...
(Note that we list these in worst-to-best order, not numerically increasing.)

The specification above contains ellipses ("...") to indicate that more choices could have been
listed. Ignoring extra choices for a moment, the total number of different choices ("quality points")
in the example can be calculated:

di

\Qi\ = II \Qü\ = 4x1x5x5x30x4x2x4 = 96,000

(A single option in data delivery reliability and 30 different frame rates were chosen for this example.)
With these many quality points it would be completely out of the question to have the user specify
the quality on a point-by-point basis. Therefore a pragmatic method is needed to address the issue.

4.2 Application Utility and QoS Tradeoff

Because QoS is often multi-dimensional, and because its measure could be objective or subjective
(user or session dependent), a user might want to make some quality tradeoff, especially when
resources (processing power or the link speed) on or between the end and intermediate nodes might
dynamically change. For example, a user (or task Tj) might have a desired quality level, but be able
to tolerate certain lower quality if there are insufficient resources to obtain the desired quality. It is
therefore to the user's advantage for a system to provide an interface that allows the user to make
implicit or explicit quality tradeoffs.

2The choices listed here come from [ITU95] [Say96]. Other standards, such as MPEG [MGF96] [LG91] [Say96]
could have been used instead.

In our previous work [LRM96], specifically the RT-Phone (a video conferencing system) , we used a
leveled QoS specification scheme of a simple one to ten scale. These scales are statically mapped to
certain quality choice combinations, where many of the quality choices therefore left out (as we can
think about it as a "QoS digitization"). At another level (for more involved users), individual knobs
(sliding bars) were provided that a user could tune on each quality dimension. This second level
had many fewer choices than listed above in Section 4.1. We therefore have extended our previous
work, to allow each task Tj to specify its minimum acceptable quality (<?f"n), saturation level (q™ax)
and application utility function as part of the task profile (application profile instantiated with user
profile). Thus our QoS management optimization engine will work most effectively to help each
task achieve as high level of quality as possible, subject to resource constraints and the management
policy deployed in the system.

Application utility functions are conceptually easy to imagine but difficult to construct. As pointed
out in Section 4.1, it is clearly infeasible to make the user specify the utility of every quality choice
on a point-by-point basis. There are simply too many choices. Instead, one could make the user
specify the utility of selected points and then interpolate in order to get the utility of the rest. This
might work well in the one-quality dimension case, but in the multi-dimensional case one would
need a dense net of selected points and therefore again need too many points.

While we would like a user to provide the service optimization system with the translucent and
semantically rich service requirement specification so that the optimization module can best accom-
modate the user's request, we also want to ensure that methods and mechanisms are in place in
the system that will facilitate the delivery of these specifications from the user. In other words, we
want to develop a measure and merit scheme as well as a reasonably user-friendly interface that
will pose less of a burden on the user without sacrificing the semantically rich capability of the
specification interface. Therefore a QoS index model is proposed from which dimension-wise quality
utility functions are defined.

4.3 Quality Index

Certain quality dimensions, such as frame rate, have easily defined utility functions while others,
such as picture format and end-to-end delay, are in non-numeric, non-uniform, or non-increasing
order which require a quality to numeric mapping. Therefore the Quality Index is introduced, which
maps qualities to indices.

The concept and the use of Quality Index is illustrated in the context of an example application.

Consider task T;, which could be a video conferencing system. Tj's quality dimensions, quality space
and Quality Index are as follows:

Picture format: Assume it uses the H263 [ITU95] standard format

Format: SQCIF QCIF CIF 4CIF 16CIF
Quality Index: 1 2 3 4 5

The corresponding Quality Index is therefore Qn = {1,2,3,4,5}.

Color depth: Assume that T,- has 1, 3, 8, 16, and 24 bit color depths available for the user to
choose.

Depth: 1 3 8 16 24
Quality Index: 12 3 4 5

Therefore <3,-2 = {1,2,3,4,5}.

Frame rate: T; allows frame rates ranging from lfps to 30fps in steps of lfps. These will map
directly onto Qis = {1,2,..., 30}.

Rate (fps): 1 2 ... 30
Quality Index: 1 2 ... 30

Encryption key length: For T,-, encryption will be either on with 56-bit encryption or off. There-
fore we have Qi4 = {1, 2}.

Key length: (none) 56-bit
Quality Index: 1 2

Audio sampling rate: Assume T; provides audio sampling rates from AM-quality (8 kHz) to CD-
quality (44 kHz).

Sampling rate (kHz): 8 16 24 44
Quality Index: 12 3 4

Thus we have Qi$ = {1, 2, 3,4}.

Audio bit count: Assume that Tt provides only two sampling sizes, 8 bits and 16 bits.

Bit count: 8 16
Quality Index: 1 2

Therefore Qi% — {1,2}.

End-to-end delay: Assume that end-to-end delays ranging from 125 ms to 25 ms in steps of 25 ms.
Since high numbers for end-to-end delay are worse than low numbers, Qij = {1, 2,..., 5} maps
high number to low indices.

Delay (ms): 125 100 ... 25
Quality Index: 1 2 ... 5

4.4 Dimension-wise Utilities

Quality points in the multi-dimensional case do not have a complete ordering. The individual dimen-
sions, however, do. Moreover, some common properties associated with dimensional quality utility
are observed including: non-decreasing, often quasi-continuous and piecewise concave. Figure 3
depicts some typical utility function shapes.

Recall that the application utility U{ for T; is defined in terms of the value accrued when T; achieves
a certain quality, i.e. Ui : Qi —> JR. As discussed above, when many quality dimensions are involved,
it is often very difficult for a user to express his/her quality preferences. We therefore provide the
user with the capability to specify dimension-wise quality utilities. As a result, the application
utility can then be defined as a weighted sum of dimension-wise quality. This creates an inter-
esting issue regarding how weights should be assigned. Currently the Analytic Hierarchy Process
(AHP) [Saa92a][Saa92b] model and the Simple Multi-Attribute Rating Technique (SMART) [Edw97]
are used to cope with the problem.

10

Figure 3: Typical Dimension-wise Utility Functions

Given the Quality Index, a dimension-wise utility could be defined and hence the application utility.
Again, an example task profile is presented in the next subsection to illustrate the possible structure
of dimension-wise utility functions and application utility functions.

4.5 Example Dimension-wise Utilities and Application Utilities

Recall that application utility U{ for T; is defined as a weighted sum of the dimension-wise quality
utilities.

7

3=1

where Ujj are the dimensional utility functions. Example definitions could be:

Function Comments

Ui2(qi2) = 100gi2/3
i*,-3(fc3) = 100(1 - ea«3+6)

Picture format: linear.
Color depth: linear.
Frame rate: exponential decay, assume T; achieves 50% at
qi3 = 5 and 95% at q^ — 20. Therefore a = —0.1535,6 =
0.0744.
Encryption: linear.

Uis(qi5) = 100(1 — e-1-59'5) Audio sampling rate: exponential decay, T,- achieves 95% at
gi5 = 2 or 16 kHz.

Uie{qie) = 50<^6 Audio sampling bits: linear.
unfair) = 20qi7 End-to-end delay: linear, achieves 100% at the best quality

point, qi7 = 5 or 25 ms delay.

Ui4(qi4) = 20(^4- 1)

Figure 4 depicts the utility curve described above for frame rate.

Suppose Ti is a remote surveillance system, where video is much more important to the user than
audio. Assume that SQCIF, gray-scale, low frame rate is fine for video, and there is no need for
encryption. Therefore, in the example system of section 4.3, we could have the following minimum
quality specification

<Tn = (1.1. 2,0,1,1,2)

11

.1 °'4

1 A
i 4

15 20
Frame Rate (fps)

Figure 4: Dimension-wise Utility Function for Frame Rate

which corresponds to the following minimum quality

(SQCIF, 1 bpp, 2 fps, no encryption, 8 kHz, 8 bps, 100 ms).

Since video is more important to the user than audio, an example application utility function for T,-
could be:

ui(q1,...,q7) = öUiifei) H \rUi4{qi4)) + l(ui5(qi5) -\ \-ui7(qi7

video audio

where video quality is weighted five times more than that of audio.

4.6 User Interface Consideration

If a user were to choose quality on a scale of 1 to 10 with some pre-determined quality choices preset
by the system, the interface would be very simple.

A more flexible, but also more complicated, scheme would be to have a set of parameterized utility
curves available for each quality dimension, and to have the user pick the curves and instantiate
appropriate parameters/coefficients. In our system, the instantiation is carried by letting the user
graphically specify Satisfaction Knee Point parameters. For the exponential-decay used in the
previous example (uiz(qü) = 1 — eaqi3+b), the user could specify the 50% and 95% levels. This is
enough to uniquely determine a and b. For example, a user could specify (5fps, 0.50) and (20fps,
0.95), and the corresponding utility curve would then be the one shown in Figure 4, with a = —0.1535
and b = 0.0744.

It would be ideal to have an interface that could help the user digitize the quality to a certain range
of scale, and acquire the corresponding utility accordingly. One way could be to move the dimension-
wise utility function method to the user interface part to synthesize or digitize quality-utility data,
as it could significantly reduce the quality space searched by the QoS management optimizer.

12

5 Issues on Algorithm Choice and Methodology

5.1 Algorithm Design Issues — Solution Quality vs. Computational Complexity

As is shown in [LS98] the QoS management optimization problems are NP-Hard. As a consequence,
there are no optimal solution techniques other than an (possibly complete) enumeration of the so-
lution spare. On the other hand, QoS management calls for on-line solutions as the optimization
module will ideally be in the heart of an admission control and adaptive QoS management sys-
tem. Therefore the goal is to strike the right balance between solution quality and computational
complexity.

For more than two decades, many researchers from the fields of mathematics, computer science
and operations research have been working on the combinatorial optimization and solving NP-Hard
problems. There are three algorithmic approaches [AL97] [MT90] that have been well studied and
widely used :

• enumerative methods that are guaranteed to produce an optimal solution [Iba87a][Iba87b],

• approximation algorithms that run in polynomial time [Sah75][IK75], and

• heuristic techniques (under the general heading of local search) that do not have a priori
guarantee in terms of solution quality or running time, but provide a robust approach to
obtaining a high-quality solution to problems of a realistic size in reasonable time [AL97].

An important attribute is the incremental and state-reuse property of a scheme, so as to avoid having
to completely redo expensive computations to accommodate the dynamic arrival and departure of
tasks. Also, we ensure that all algorithms should be formulated so that the the search for an optimal
solution can be terminate at any time while still reaching a feasible, but sub-optimal and hopefully
good, solution. These two properties are essential for an algorithm to be used in an online (or
near-online) environment.

Therefore a series of schemes have been developed that give approximation, approximation with
bound, and exact solutions, with increased asymptotic computational complexity. These algorithms
use various optimization techniques including linear and nonlinear programming, constraint relax-
ation, basic dynamic programming, branch-bound, advanced dynamic programming with addition
of dominance rules, direct and local search schemes. In addition parallel algorithms are being de-
veloped to speed up the computation process.

It will be necessary to conduct extensive empirical studies to evaluate the practical performance of
these algorithms when deployed under different system setups and task profiles. For instance, the
systems to which QoS management optimization engine could be deployed could range from an end-
node multi-media workstation, small or medium scale proxy/transceiver3 servers, medium or large
(with firewall and routing capability) gates [Lab97], and on-demand media (news, video, stock quote,
game) servers. These studies allow comparison of the relative performance of the the algorithms
and answer questions such as whether algorithms are robust [Pis95] enough to cover multiple cases,
or whether combination algorithms might prove useful. In the latter case, the QoS management

'Data distillation for low-link-speed mobile or other clients for instance.

13

optimization engine could fire an algorithm based on the particular data instance exhibited by the
profiles of application/user sessions in the system.

Another important issue, which is policy-dependent but would affect the actual algorithm design,
is the stability of the task quality assigned to existing tasks in the system. In the case where policy
requires that quality not degrade for certain tasks, some algorithms might not be suitable , while
others might be more appropriate.

5.2 Resource-Utility Scatter to Graph Structure Composition

Due to the multi-dimensional and potentially subjective nature of quality of services, there is often
no complete ordering among quality-of-service points, even for individual tasks. Only a scatter for
R and U can be drawn shown in Figure 5. So some structural composition is required for those
algorithms that call for mapping from resource to utility. Specifically, an R-U (Resource to Utility)
function/graph is constructed for each task through QoS Profile and Resource Profile. An R-U
graph can be constructed by listing each valid quality point's resource usage and its corresponding
utility.

V)

* • :•
:•

• «
• • •

 'U *
• • •

• • *

resource

Figure 5: Scatter of Resource and Utilities

Recall that given a resource allocation to a task, one could use the resource to improve different
QoS dimensions, which could therefore lead to different utility values. But the most valued QoS
point for each resource value can be picked, as intuitively, we certainly want to assign resources to
those quality points with the highest utility value.

We therefore define a function g{ : R —± IR, such that

gi(r) = max{ Ui(q) \r\=iq) (5)

and define hi : R —¥ V(Qi) to retain the quality points associated with the utility value gi{r):

hi{r) = { q £ Qi | Ui{q) = gi(r) A r 1=; ? } (6)

Then an R-U graph can be generated for each task, each of which would be a step function (perhaps
with multiple level of steps).

14

6 SRMD Algorithms

6.1 An Approximation Scheme for SRMD

By constructing the convex hull for each of gi (see Definition 5) functions we get piece-wise linear
relaxation functions g°, i = 1.. .n. The gradients of of g° can be used as' a heuristic to allocate
resources among these tasks4.

Let

Q =

be the utility function </;'s discontinuity points in increasing r-order (therefore increasing «-order
as well), and we will refer it as r-u-pair list. Denote by rc the current remaining resource capacity
after certain resource has been allocated; s_list[i].t, s_list[i].r, sJistfi].« the task id, the associated
r-value and «-value of the corresponding r-w-pair list; and r[i] the resource allocated for T{.

approx_srmdl (n, Ci,..., Cn)
1. for i = 1 to n do
2. C[:= convexJiulLfrontie^C,)
3. u[i\ := 0
4. r[i] := 0
5. sJist= merge(Ci,..., C'n)
g „c ._ j,max

7. u := 0
8. for j = 1 to \sJist\ do
9. i := sJist[j].t

10. ß - sJist[j].r - r[i]
11. if (ß < rc) then
12. rc := rc - ß
13. r[i] := sJisifjj.r
14. u[i] := sJisf^'].« /* Update allocation info for Ti. */
15. else
16. break
17. for i = 1 to n do
18. g[t] := hi{r[i\) /* See Definition 6. */
19. u := u-\- u[i]
20. return (#[1],..., q[n], u)

Note that each q[i] provides a set of quality choices from which T; (its user, or session manager)
could choose to make further QoS tradeoffs.

Notice that in implementation, we actually replace "break" in line 16 with continue (i.e., let the
loop continue when condition at step 11 does not hold). This means that after the optimal condition
is violated, the residual capacity (rc) will be greedily filled. The continuation can be thought as a
post-optimization process. The error bound property to be proved below holds for either cases.

4 The algorithm and analysis in this section is a clarification and a slight improvement over a similar algorithm
described in [RLLS98].

15

Let L = maxf_j |C4|. After the procedure convex-hulLfrontier5 (which takes time 0(nL)) a convex
hull frontier with non-increasing slope segments (piece-wise concave) is obtained for each task.
The segments are merged at step 5 using a divide-and-conquer approach with log2 n levels, each
level has nL comparisons. Merging thus takes time 0(nLlogn). Steps 8 through 16 require
0(\sJist\) — O(nL). Steps 17 through 19 take 0{n). The total running time of the algorithm is
thus O (nL log n) + O (nL) = O (nL log n).

Denote by Si the maximum utility difference between adjacent discontinuity points of C[, i.e., the
largest increase in utility for task T,- on the convex hull frontier. Let x = maxf=i f>i- Denote by f7opt
the optimal utility result and Usrm(n the approximation result obtained by algorithm approxsrmdl.

Proposition 2 Usrmdi is within \ ofUopt, i-e- Uopt - X < Usrmdi < Uopt.

Proof Note first, that if the residual resource, rc, ends up being zero before executing "break"
at step 15 (or if j reaches the end of \sJist\), then the solution found is in fact optimal based on

Kuhn-Tucker condition[PSJJU80], as each g° (represented by C\ in approxsrmdl) is essentially a
piece-wise concave function.

Approxsrmdl produces a utility value, C/srmcji, which is feasible. Therefore we have C4rmdi < C/0pt-

Suppose that convex hull frontier segments (ordered and stored in sJist) are consecutively used
(with corresponding quality upgrade and added utility) until the first segment, s, is found that
requires more resource than residual resource capacity rc to realize the extra utility at the end of
the segment s (remember that the convex hull segments are imaginary linear relaxation of the real
utility functions).

Let the two end points of the critical segment s be (rsi,usi) and (rs,-+i, ttst-+i) in C[.

Based on Kuhn-Tucker condition and Dantzig[Dan57] upbound, we have

TT ^ TT 1 / C \ USl + l ~ Usi
Uopt < t/srmdl + (r - rsi) —■ —-

fsi+1 Tsi

< t/srmdl + (rsi+l ~ rsi) ;
Tsi-\-l rsi

== t-/srmdi "T Usi^-i Usi

and we know that MS;+I — usi < x, therefore Uopt — Usrmdi <6 X- n

Remark: To give a feel for how tight the bound is from below, examine two cases (see Figure 6)
when the results are suboptimal. The reason for the first case is sub-optimality is due to the convex
hull approximation error (where one or more intermediate utility points are bridged and removed
when we construct g° (or C'), from gi (or C;); the reason for the second case is the consequence of
the greedy heuristic (no costly backtracking after optimal condition is violated) near the end of the
approxsrmdl optimization process.

Case 1. When interior (intermediate) points are bridged over and dominated by the critical convex
hull segment s.

5Overmars & Leeuwen's [OL81] algorithm, or simply the quickhull [PS85] or Graham-Scan [CLR90] when Ci are
not pre-sorted.

6Except in the degenerate case where \ = 0, and Uopt — f/srrncji = X = ^opt = ^srmdl = 0-

16

fe'Usi)

Figure 6: Suboptimal Cases

Let the inferior point bridged over by s with the largest utility be (r,-, Uj), where j > si in the original
d list of T{. Further assume that rj — rsi < rc, and there is no more elements left in sJist. Then
when approxsrmdl stops and reports the achieved utility of Ü7srmdii which excludes (rs;+i, usi+i),
the optimal is in fact Uopt = Usrmdi + (UJ - usi). Since Uj - usi < x, USTmdi < Uopt - X-

Case 2. When rc > rsj, and there are (rsj,usj) and (rsk,usk) 7 in sJist, where sj.sk > si, and
their slopes are lower than that of ("^), but (rc - rsi) < rsj, (rc - rsi) < rsk, rsj + rsk < rc, and
(usj + usk) > usi. By the Dantzig bound, the f7srmdi would be well within x as we^-

Although approx-srmdl is a polynomial approximation algorithm with a describable and potentially
small error bound from the optimal result, the bound is not controllable. Section 6.2 presents another
polynomial scheme with a controllable error bound.

6.2 An Optimal Solution Scheme for SRMD

Assume that the resources are allocated in units of r
max/P for some integer P. If, for example,

P = 100 this would mean that allocation is in integer percentage. Under this assumption, we can
characterize the structure of the optimal solution and recursively define its value as follows:

Denote by v(i,p) the maximum utility achievable when the first i tasks are considered with resource
rmaxp/P available for allocation, and define

v(i,p)= max Agi{p') + v(i - l,p - p')}
p'e{o,...,pj

(7)

The set of interesting p' values is in fact just all the (starting) discontinuity points of </j (see Defi-
nition 5).

Therefore v(n,P) will be the maximum utility achievable by allocating up to rmax to the n tasks,
i.e., the best allocation overall.

7Or a single element with higher utility value than usi given rsi + rc. This case is not shown in Figure 6

17

Based on Equation 7, the following algorithm srmd can be constructed through dynamic program-
ming. Let

Mfe) te)>
denote the utility function g^s discontinuity points in increasing «-order, and qos(i,p) the list of
QoS allocation choices for T\ through T,- towards v(i,p).

srmd(ra, P,Ci, ...,C„)
1. forj9 = 0toPdo
2. qos(0,p) := nil,v(0,p) := 0
3. for i: = 1 to n do
4. qos(i, 0) := m7, v(i, 0) := 0
5. for p = 1 to P do
6. u*:=0,j*:=0
7. for j = 1 to |C,-| do
8. if (rij > p or /i;(r;j) < g™in) break
9. u := Uij + v(i-l,p- rtj)

10. if u > u* then
11. u*:=u
12. i* :=j
13. qos(i,p) := qos(i — l,p—r^*) concat [/^(r;j*)]
14. u(i,p) := M*

15. return v(n,P) and qos(n,P)

The result v(n,P), the utility accrued when 100% of the resource is available, is optimal. Let
L = max"_j |C,|. The time complexity of the algorithm is O(nLP) or 0(nP2), which is pseudo-
polynomial.

One of the plus sides of this scheme (also true for the MRMD scheme described in Section 7.1) is
its incremental and state-reuse property in which when a new task arrives, previous results can be
directly reused to avoid the expensive recomputation of the complete new task set.

When the session length information of tasks are available, the task lists are generally ordered in
decreasing session length order, so when a task Tn finishes and departs the system (and therefore
releases some resources), the result for T,-, i = 1,..., n — 1 is already computed and kept in the
system, that could be reused to make a quick decision (not necessarily to be optimal especially
when stability policy is in use) on which tasks' qualities could be improved.

When a priority-based policy alone is emphasized, the task list to be fed into the algorithm will be
in non-increasing order of task priorities.

Srmd could to be a practical method for QoS-driven single resource allocation, such as processor
scheduling in operating systems which support QoS. The algorithm, with minor change, would be
suitable to deal with the stability problem when a user prefers (or a policy requires) a relative
consistent quality.

18

6.3 A Polynomial Scheme with Controllable Bound for SRMD

The algorithm approx.srmd2 to be described will give an approximate quality and resource allocation
which is guaranteed to have a maximum relative error, s, where 0 < e < 1 is a user-specified value.
A relative error of e means that the utility Usrmd2 found by the algorithm satisfies

(1 - e)i70pt < £/srmd2 < Uopt

where Uopt is the optimal utility.

Before presenting approxsrmd2, let us define some data structures and operations to be used in the
algorithm. All utility function g^s discontinuity points are listed in increasing «-order as

«-(ft) fc)>

where (°) is the first element, and referred to as r-w-pair lists. We also define the following operation
for r-u-p&iT lists and r-w-pair elements.

((::) (::))+(:)=((:::;) (::::)>
Note, that this operation produces a new r-tt-list that is sorted non-decreasingly in «-value. From
now on such sorting will be assumed.

Let A and B be r-«-pair lists. The procedure combine-and-merge will combine A and B into a
single r-w-pair list.

combine_Jand_merge(A, B)
1. foreach 6t £ B
2. Ai := A + bi /* Ai is now increasing in u-value. */
3. C := merge(Ai,..., Ak)
4. return C.

where k = \B\, and A{, 1 < i < k, are intermediate r-w-pair lists.

Steps 1 and 2 takes 0(\A\ \B\), step 3 takes 0(\A\ \B\ log |J5|) if we do it through divide-and-conquer
and merge lists in pairs recursively. So combine.and-merge is 0(|A| \B\ log \B\).

The procedure resource-sieve trims those r-w-pair elements of list L = (("a)> • • •> .C-")/ wnicn do not
satisfy r < rmax; and those inefficient elements. By inefficient we mean: for each element ("') and
element ("i+1) from L, if r,-+i < r^ (and U{ < «,-+1 since elements are sorted) then ("*) is inefficient
and should be removed from L. Intuitively, we only want to keep those choices that use less resource
while achieving the same or higher utility. The procedure takes 0(|L|).

resource_sieve(£, rmax)
1. i := 1
2. while i < \L\ do
3. if r,-+i > rmax then

19

4.
5.

Remove lu'+1) from Z
else

6. while i > 1 and r8+i < r8- do
7. Remove ("') from Z
8. i := ?' — 1
9. / := / + 1

10. if /•; > ;max then
11. Remove ("') from Z
11. return Z.

Procedure r<pirtentativeJist trims the r-w-pair list further in 0(|Z|) by removing elements that are
too close lo other element in terms of «-value. That is, for each adjacent ("') and ("i+1) from Z, if

(«i+i - »;)/»;+i < 8, then ("!+1) can be presented by ("*) with a discrepancy of at most 8 w.r.t. the

M-value of (",+ 1) . and therefore (u'+1) can be removed from L.

representativeJist(Z/, S)

1- L':=((•-))
2. u~ := tu

3. for i = 2 to \L\ — 1 do
4. if («" < Ui{l-S)) then
5. append ("■) to V
6. u" := Ui

7. return Z,'

Given the above procedures, the bounded approximation scheme can be constructed as follows. For
the sake of simplicity of the complexity analysis to be followed, we introduce some intermediate lists
■L'ia-i J-'ib and Li.

approx_srmd2(Ci, •■■; Cn, e)

1- £o:=(0)
2. 8 := e/n
3. for i = 1 to n do
4. Lia := combine_and_merge(I/i_i,Ct)
5. £<,•;, := resource_sieve(iia, r

max)
6. Z4 := representativeJist(Z;6, 8)
7. let (") be the element with the largest utility value in Ln

8. return Q)

Without resourcesieve and representativeJist the length of the list obtained at step 4 in ap-
prox-srmd2 could increase exponentially. We will show that with those steps, the length of of
Li will be bounded by " IH"up/"iOTr,> _|_ 2 L where uup and u\ow are easily determined from d and /

is a suitable constant.

Lemma 1 Given two sorted r-u-pair lists A and B, combine_and_merge generates a sorted r-u-pair
list which contains all the possible combinations of a choice element from A and a choice element
from B.

20

Proof Since A is sorted, each A; in step 2 of combine „and jmerge maintains its order. Moreover
A{ contains all new combinations of choices that can be generated by selecting one choice from A
and the other as 6,- from B. Therefore after the loop at step 1 of combine-andjmerge finishes, all
possible combinations of one element chosen from A and one element chosen from B are stored
in Ai, where 1 < i < \B\. The merge at step 3 will therefore generate a single combined sorted list.
D

Theorem 1 The approximation of approx_srmd2 is within a bound of e w.r.t. the optimal.

Proof If we were not to have the trimming operations resourcesieve and representativeJist in
steps 5 and 6 (denote such lists generated without trimming by L°), we could prove, based on
Lemma 1, by induction on i that combine „and „merge at step 4 would list all the possible r-w-pair
combinations for i tasks. It would then lead us to an optimal solution at the expense of exponential
time complexity in general, since the length of L° would grow exponentially.

With trimming that removes from L{ every element that is greater (in terms of r-value) than rmax

in step 5, and the trimming in step 6, the property that every remain element in L{ is a member
of the complete solution space is maintained. Therefore, the r-w-pair returned in step 7 is indeed
one valid allocation scheme. It remains to show that the u-value of the returned pair is not smaller
than 1 — £ times an optimal solution.

Since resource sieve at step 5 only throws away invalid elements that violate the resource constraint,
or those that for sure cannot contribute toward the optimal solution, any error will only be caused
by representative Jist. So it remains to be shown that the relative error caused by representativeJist
is bounded.

When Li is trimmed by representativeJist, a relative error of at most 5 (or e/n) is introduced
between the representative values remaining in the list and the values before the trimming. By
induction on i, it can be shown that for every element ("„) in L° with r° < rmax, there is an (")
in Li such that

(1 - e/nfu0 <u<u°.

If (üo,pt) € L° denotes an optimal solution to the SRMD problem, then there is an (") G L{ such
that

(1 - e/n)nUopt <u< Uopt

The (u) with the largest u is the value returned by representativeJist and u = USTmd2- The value of
(1 — e/n)n increases with n, as it can be shown that

4-(l-~Y>0 f0TX>l,
dx \ x)

so that n > 1 implies 1 - e < (1 — s/n)n, and therefore

(1 - e)Uopt < Usrmd2 < Uopt

That is, the result returned by representativeJist has a maximum relative error of less than e. □

We will show that the algorithm is of polynomial time complexity. Begin by investigating i,- in
representativeJist. After trimming, successive elements ("') and ("'+1) of Li must satisfy v,{ <

Ui+i(l — S), that is

Ui 1 — 8

21

Let / = 1/(1 — 5) and K = |_logy(Mup/wiow) + 2J, where uup > 0 is the u in step 7 of approx^srmd2
and uiovr > 0 is the smallest utility value, among all tasks, other than 0.

Lemma 2 There are at most K elements in each Li of step 6 of approx_srmd2.

Proof Not counting the first element (whose u-value is zero), representativeJist at step 6 removes
elements that differ in w-value from each other by a factor of less than /. Therefore, the number of
elements in Li will be at most

1 + max{ k > 0 | fku\ow < uup } = 1 + [\ogf(uup/uiow) + lj

= [log/(uup/wlow) + 2j

= K.

a

Theorem 2 approx.srmd2 is a polynomial approximation for SRMD.

Proof Since steps 4 through 6 in approx„srmd2 are all polynomial in the lengths of the lists they
handle, and since step 6 by Lemma 2 reduces the number of elements to less than K, it remains to
be shown that the number of elements after steps 4 and 5 are bounded.

For step 5 this is trivial since it reduces the number of elements. For step 4, the number of elements
grows by a factor of |Cj|, so the number of elements after step 4 is bounded by KCmax where

Cn max \d\
1 = 1,...,71

The total number of steps in approxsrmd2 therefore is bounded by

cnKCmax = c7iCmax[log/(Uup/Mlow) + 2J

= CnCmaX [log1/(1_e/n)(Mup/«low

< cnCmax n\n(uup/u\ow) + 2

for some constant c > 0.

Therefore, the algorithm is polynomial in time in terms of the input and 1/e. And it is clear that
the algorithm is polynomial in space as well. D

The analysis of approxsrmd2 is, in part, modelled after [IK75].

22

7 MRMD Algorithms

7.1 Optimal Solution Schemes for MRMD

7.1.1 Dynamic Programming

The scheme and algorithm described in this section is an extension of the algorithm described in
Section 6.2. We will concentrate on the two resources (i.e., m = 2) case, but the scheme and results
described below extends easily to higher dimensions.

The challenge here is to extend the tabular or dynamic programming scheme described under Sec-
tion 6.2 in the presence of multiple resources. As in the single resource case, allocation is in units
of rf^/Pi and r%aa/P2.

For the two-resource case, the structure of an optimal solution of the problem can be characterized
as follows:

Denote by v(i,pi,p2) the maximum utility achievable when only the first i tasks are considered
with r™axpi/Pi of resource R\ and r2

iaxp2/P2 of resource R2 for allocation. Define the value of an
optimal solution recursively in terms of the optimal solutions to subproblems as

v(i,Pi,P2)= max {#(pi,j/2) + v(i - l,pt - p[,p2 - p'2)}
p[e{o,...,P1}

p'2€{o,...,P2}

As for the single source case, v(n,Pi,P2) will be the maximum utility achievable. The set of
interesting p[and p'2 values are just all the (starting) discontinuity points of g{. The time complexity
of the algorithm is 0(nPiP2), which is pseudo-polynomial as well. To save space, the complete
algorithm which is very similar to approxsrmd2, is omitted.

The above algorithm extends to multiple resources with time complexity 0(nP^ • • -P^), where m
is the number of resources involved for consumption and tradeoff. Due to its pseudo-polynomial
complexity, we expect that its use will be limited for on-line systems, instead it will mainly be used
for off-line and solution quality measurement of other heuristic and approximation schemes.

7.1.2 Integer Programming

From problem formulation 2 (Section 3.3), Integer Programming can be applied. For efficiency,
we use CPLEX [Div97] MIP callable library which employs a branch-and-bound algorithm. In the
branch-and-bound method, a series of LP subproblems is solved. A tree of subproblems is built,
where each subproblems is a node of the tree. The root node is the LP relaxation of the original IP
problem.

One negative aspect of the branch-and-bound techniques for solving integer programming problem
is that the solution process can continue long after the optimal solution has been found, as the tree
is being exhaustively searched in an effort to guarantee that the current feasible integer solution
is indeed optimal. As we know, the branch-and-bound tree may be as large as 2n nodes, where
n equals the number of binary variables. A problem containing only 30 variables could produce a

23

tree having over one billion nodes. Its applicability for practical large MRMD problem is yet to be
determined.

7.2 Approximation and Heuristic Schemes

To improve the performance of our integer programming with branch-and-bound, described in the
last section, we use task priority and gradient of dimension-wise quality utility function as heuristics
for developing integer solution at root node and selecting branching node, variable, and direction.
Optimality tolerance (such as the gap between the best result and utility of the best node remaining)
or limits on time, nodes, memory etc. can be set for fast approximation results.

Local and direct search algorithms are also under development. Searching heuristic will be drawn
from task profiles including the (approx)gradient of the dimension-wise utility functions, the resource-
quality relations and other informations provided in the profiles.

Unlike the algorithms presented in the previous sections, currently we do not have theoretical mea-
sures of performance for the heuristic approximation schemes. Their experimental performance
evaluation will be presented in a separate report.

8 Related Work

Research on Quality of Service for multimedia applications has gained significant momentum over
the last few years. Much research has been being conducted on the end-system or end-to-end
architectures for QoS support [HLP91, KJS91, CSZ92, Nah93, NT94, CCH94, MST94, LNS95,
CCR95, VWHW95, RP95, LKRM96, KT97], and much more is on link, network and transport
layer ([ZDE+93, ZF94, FJ95, SCFJ96, SZN97, MS97, SFZ97, CFKS98] to name a few). Most of
this research has been focused on low-level system mechanisms. The authors consider and work on
such parameters as period, buffer size, jitter, bandwidth and so on. No doubt these are important
issues and factors for QoS control, but they are hardly tangible for the ultimate end-users for whom
QoS is meant to.

Research on adaptive QoS control [TTCM92, TK93, MJ95, LRM96, NSN+97] brings us a step
closer to the QoS support from a user's perspective by providing a mechanism in an application to
accommodate potential dynamic changes in the operating environment. But these mechanisms are
still mainly system-oriented in that a user has limited influence over the quality of the service to be
delivered or adapted.

In coping with the shortage of QoS support from an end-user point of view, we proposed a basic
framework [Lee97, RLLS97, LS98] that enables the end users to give guidance on the qualities
they care about and the tradeoffs they are willing to make under potential resource constraints.
Working from the user's perspective and maximizing the user perceived quality or utility has also
been addressed in [JLDB95, AAS97, BG98]. In [JLDB95], a user-centric approach is taken, where
a user's preferences are considered for application runtime behavior control and resource allocation
planning. Example preferences include statements that a video-phone call should pause a movie
unless it's being recorded and that video should be degraded before audio when all desired resources
are not available. These are useful hints for high-level QoS control and resource planning, but are
inadequate for quantitatively measuring QoS, or analytically planning and allocating resources.

24

An utility model for QoS control is also used in [AAS97]. In [AAS97] the authors propose a mech-
anism for QoS (re-)negotiation as a way to ensure graceful degradation. They suggest that a user
should be able to express, in his/her service requests, the spectrum of QoS levels the user can ac-
cept from the provider, as well as the perceived utility of receiving service at each of these levels.
But the authors did not address the resource tradeoff problem. Also, no specification method and
mechanism is provided to facilitate utility data acquisition. Interesting research is being conducted
in [BG98]. where the author presents a framework for the construction of network-aware applica-
tions. The basic idea is to allow an application to adapt to its network environment, e.g. by trading
off the volume (and with it the quality) of the data to be transfered and the time needed for the
transfer, (liven the framework, the application developer must specify functions to determine the
relations between quality and size as well as to provide estimates about the effectiveness of various
transformations to reduce size, and therefore to trade off the volume of the data to be transfered
and the time need for the transfer. The above mechanism coincides with one of our schemes for
implementing the resource tradeoff. The model defined in [LS98] can be considered a generalization
of [BGOs]. Attempts to optimize the system in terms of allocating CPU cycles for feedback control
applications have been studied in [SLSS96].

9 Acknowledgement

The authors would like to thank John Hooker at the GSIA of CMU for many insightful and in-
teresting discussions on our work, especially on various heuristic schemes for the MRMD problem.
Thanks also goes to John Lehoczky, Raj Rajkumar and other members of the Amaranth project at
Carnegie Mellon University.

References

[AAS97] E. Atkins, T. Abdelzaher, and K. Shin. QoS Negotiation in Real-Time Systems and
Its Application to Automated Flight Control. In Proceedings of the IEEE Real-time
Technology and Applications Symposium, June 1997.

[AL97] E. Aarts and J. Lenstra, editors. Local Search in Combinatorial Opitmization. John
Wiley & Sons, 1997.

[BG98] J. Bolliger and T. Gross. A Framework-Based Approach to the Development of
Network-Aware Applications. In IEEE Trans. Software Engineering (Special Issue on
Mobility and Network-Aware Computing), volume 24, pages 376-390, May 1998.

[CCH94] A. Campbell, G. Coulson, and D. Hutchison. A Quality of Service Architecture. Com-
puter Communication Review, 24(2):6-27, April 1994.

[CCR95] G. Coulson, A. Campbell, and P. Robin. Design of A QoS Controlled ATM Based
Communication System in Chorus. In IEEE Journal of Selected Areas in Communi-
cations (JSAC), Special Issues on ATM LANs: Implementation and Experiences with
Emerging Technology, May 1995.

[CFKS98] P. Chandra, A. Fisher, C. Kosak, and P. Steenkiste. Network Support for Application-
Oriented Quality of Service. In Sixth IEEE/IFIP International Workshop on Quality
of Service, May 1998.

25

[CLR90] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT
Press / McGraw-Hill, 1990.

[CSZ92] D. Clark, S. Shenker, and L. Zhang. Supporting Real-Time Applications in an In-
tegrated Services Packet Network: Architecture and Mechanism. In Proceedings of
the SIGCOMM '92 Symposium on Communications Architectures and Protocols, pages
14-26, October 1992.

[Dan57] B. Dantzig. Discrete Variable Extremum Problems. In Operations Research, volume 5,
pages 266-277, 1957.

[Div97] CPLEX Division. Using the CPLEX Callable Library. ILOG Inc., 1997.

[Edw97] W. Edwards. How to Use Multiattribute Utility Theory for Social Decision Making.
In IEEE Trans. Systems Man, Cybern. 7, pages 326-340, 1997.

[FJ95] S. Floyd and V. Jacobson. Link-sharing and resource management models for packet
networks. In IEEE/ACM Transactions on Networking, volume 3, pages 365-386, Au-
gust 1995.

[HLP91] J. M. Hyman, A. A. Lazar, and G. Pacifici. Real-Time Scheduling with Quality of Ser-
vice Constraints. IEEE Journal on Selected Areas in Communications, 9(7), September
1991.

[Iba87a] T. Ibaraki. Enumerative Approaches to Combinatorial Optimization — Part 1. Annals
of Operations Research, 10, 1987.

[Iba87b] T. Ibaraki. Enumerative Approaches to Combinatorial Optimization — Part 2. Annals
of Operations Research, 11, 1987.

[IK75] 0. Ibarra and C. Kim. Fast Approximation Algorithms for the Knapsack and Sum of
Subset Problems. Journal of ACM, 22:463-468, 1975.

[ITU95] ITU. ITU-T Recommendation H.263 - Video Coding for Low Bit Rate Communication,
July 1995.

[JLDB95] M. Jones, P. Leach, R. Draves, and J. Barrera. Modular Real-Time Resource Manage-
ment in the Rialto Operating System. In Proceedings of the Fifth Workshop on Hot
Topics in Operating Systems, May 1995.

[KJS91] D. L. Stone K. Jeffay and F. D. Smith. Kernel support for live digital audio and video.
In Proceedings of the Second International Workshop on Network and Operating System
Support for Digital Audio and Video, pages 10-21, November 1991.

[KT97] K. Kawachiya and H. Tokuda. A Negotiation-Based Resource Management Framework
for Dynamic QoS Control. In Proceedings Real-Time Mach Workshop '97, August 1997.

[Lab97] AT&T Labs. GeoPlex — The Enhanced Network Infrastructure For 21st Century
Services. AT&T White Paper, May 1997.

[Lee97] C. Lee. A Translucent QoS Architecture. In Proceedings of the RT-Mach Workshop
97, August 1997.

[LG91] D. Le Gall. MPEG: A Video Compression Standard for Multimedia Applications.
CACM, 34(4):46-58, April 1991.

26

[LKRM96] C. Lee, Y. Katsuhiko, R. Rajkumar, and C. Mercer. Predictable Communication Pro-
tocol Processing in Real-Time Mach. In Proceedings of the IEEE Real-Time Technology
and Applications Symposium, June 1996.

[LNS95] A. Lazar, L. Ngoh, and A. Sahai. Multimedia Networking Abstraction with Qual-
ity of Services Guarantees. In Proc. SPIE Conference on Multimedia Computing and
Networking, February 1995.

[LRM96] C. Lee, R. Rajkumar, and C. Mercer. Experience with Processor Reservation and
Dynamic QoS in Real-Time Mach. In Proceedings of the Multimedia Japan 96, March
1996.

[LS98] C. Lee and D. Siewiorek. An Approach for Quality of Service Management. Technical
Report CMU-CS-98-165, Carnegie Mellon University, October 1998.

[MGF96] J. Mitchell, D. Le Gall, and C. Fogg. MPEG Video Compression Standard. Chapman
k Hall, 1996.

[MJ95] S. McCanne and V. Jacobson. vie: A Flexible Framework for Packet Video. In Proc.
ACM Multimedia'95, November 1995.

[MS97] Q. Ma and P. Steenkiste. Quality of Service Routing for Traffic with Performance
Guarantees. In IFIP International Workshop on Quality of Service, May 1997.

[MST94] C. W. Mercer, S. Savage, and H. Tokuda. Processor capacity reserves: Operating
system support for multimedia applications. In Proceedings of the IEEE International
Conference on Multimedia Computing and Systems (ICMCS), pages 90-99, May 1994.

[MT90] S. Martello and P. Toth. Knapsack Problems — Algorithms and Computer Implemen-
tations. John Wiley & Sons Ltd., 1990.

[Nah93] K. Nahrstedt. Network Service Customization: End-point Perspective. Technical Re-
port MS-CIS-93-100, University of Pennsylvania, December 1993.

[NSN+97] B. Noble, M. Satyanarayanana, D. Narayanan, J. Tilton, J. Flinn, and K. Walker. Agile
Application-Aware Adaptation for Mobility. Proceedings of the 16th ACM Symposium
on Operating System Principles, oct 1997.

[NT94] T. Nakajima and H. Tezuka. A Continuous Media Application supporting Dynamic
QOS Control on Real-Time Mach. In Proceedings of the Second ACM International
Conference on Multimedia, pages 289-297, October 1994.

[OL81] M. Overmars and J. Leeuwen. Maintenance of Configurations in the Plan. In Journal
of computer and System Sciences, volume 23, pages 166-204, 1981.

[Pis95] D. Pisinger. Algorithms for Knapsack Problems. PhD thesis, University of Copenhagen,
Dept. of Computer Science, February 1995.

[Pro96] Amaranth Project. Amaranth Project. Amaranth White Paper, December 1996.

[PS85] F. Preparata and M. Shamos. Computational Geometry : An Introduction. In Texts
and Monographs in Computer Science. Springer-Verlag, 1985.

[PSJJU80] A. L. Peressini, R. E. Sullivan, and Jr. J. J. Uhl. Convex Programming and the Karish-
Kuhn-Tucker conditions, chapter 5. Springer-Verlag, 1980.

27

[RLLS97] R. Rajkumar, C. Lee, J. P. Lehoczky, and D. P. Siewiorek. A QoS-based Resource Al-
location Model. In Proceedings of the IEEE Real-Time Systems Symposium, December
1997.

[RLLS98] R. Rajkumar, C. Lee, J. P. Lehoczky, and D. P. Siewiorek. Practical Solutions for QoS-
based Resource Allocation Problems. In Proceedings of the IEEE Real-Time Systems
Symposium, December 1998.

[RP95] R.Gopalakrishnan and G. Parulkar. A Framework for QoS Guarantees for Multimedia
Applications within an Endsystem. In Swiss German Computer Society Conference,
September 1995.

[Saa92a] T. Saaty. Decision Making for Leaders. RWS Publications, Pittsburgh, 1992.

[Saa92b] T. Saaty. Multicriteria Decision Making - The Analytic Hierarchy Process. Technical
report, University of Pittsburgh, RWS Publications, 1992.

[Sah75] S. Sahni. Approximation algorithms for the 0-1 knapsack problem. In Journal of ACM,
volume 23, pages 555-565, 1975.

[Say96] K. Sayood. Introduction to Data Compression. Morgan Kaufmann Publishers, Inc.,
1996.

[SCFJ96] H. Schulzrinne, S. Casner, R. Frederic, and V. Jacobson. RTP: A Transport Protocol
for Real-Time Applications. RFC 1889, 1996.

[SFZ97] P. Steenkiste, A. Fisher, and H. Zhang. Resource Management in Application-aware
Networks. In Workshop on the Integration of IP and ATM, November 1997.

[SLSS96] D. Seto, J. Lehoczky, L. Sha, and K. Shin. On Task Schedulability in Real-Time Control
Systems. In IEEE Real-Time System Symposium, December 1996.

[SZN97] I. Stoica, H. Zhang, and E. Ng. A Hierarchical Fair Service Curve Algorithm for Link-
Sharing, Real-Time and Priority Service. In Proceedings of SIGCOMM'97, 1997.

[TK93] H. Tokuda and T. Kitayama. Dynamic QOS Control based on Real-Time Threads. In
Proceedings of the Fourth International Workshop on Network and Operating System
Support for Digital Audio and Video, pages 113-122, November 1993.

[TTCM92] H. Tokuda, Y. Tobe, S. T.-C. Chou, and J. M. F. Moura. Continuous Media Commu-
nication with Dynamic QOS Control Using ARTS with an FDDI Network. In Proceed-
ings of the SIGCOMM '92 Symposium on Communications Architectures and Protocols,
pages 88-98. ACM, October 1992.

[VWHW95] C. Volg, L. Wolf, R. Herrtwich, and H. Wittig. HeiRAT - Quality of Service Manage-
ment for Distributed Multimedia Systems. In Multimedia Systems Journal, November
1995.

[ZDE+93] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala. RSVP: A New Resource
ReSerVation Protocol. IEEE Network, pages 8-18, September 1993.

[ZF94] H. Zhang and D. Ferrari. Improving Utilization for Deterministic Service in Multimedia
Communication. In Proceedings of the IEEE International Conference on Multimedia
Computing and Systems (ICMCS), pages 295-304, May 1994.

28

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required
not to discriminate in admission, employment, or administration of its programs or activities
on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil
Rights Act of 1964, Title IX of the Educational Amendments of 1972 and Section 504 of the
Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or
administration of its programs on the basis of religion, creed, ancestry, belief, age, veteran
status, sexual orientation or in violation of federal, state, or local laws or executive orders.
However, in the judgment of the Carnegie Mellon Human Relations Commission, the Depart-
ment of Defense policy of, "Don't ask, don't tell, don't pursue," excludes openly gay, lesbian
and bisexual students from receiving ROTC scholarships or serving in the military. Neverthe-
less, all ROTC classes at Carnegie Mellon University are available to all students.

Inquiries concerning application of these statements should be directed to the Provost,
Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone (412) 268-
6684 or the Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue,
Pittsburgh, PA 15213, telephone (412) 268-2056.

Obtain general information about Carnegie Mellon University by calling (412) 268-2000.

